Historic slate roofs should be repaired rather than replaced whenever possible. Before replacing a slate roof, check for isolated damage, corroded and worn flashings, leaky gutters, poor ventilation in the attic, and other possible sources of moisture. All too often slate roofs are mistakenly replaced when, in fact, they could have been effectively repaired. Deciding whether an historic slate roof should be repaired or replaced can be difficult and each roof must be judged separately.
If repair is not possible and a new slate roof must be installed, it is important to remember that more than just the replacement of the slate is involved. The old slate should be removed to prevent overloading of the roof timbers. Stripping should be done in sections, with felt installed, to avoid exposing the entire subroof to the weather. ln the process, rotted wood sheathing should be replaced and the roof timbers checked for signs of stress including deflection, cracking, and twisting. If such conditions are found, a structural engineer experienced in working with older buildings should be consulted. Other repairs, such as chimney repointing, which may require access to the roof should be completed before the new roof is put on.
Drawings and specifications for a new slate roof should be prepared by a restoration architect, especially if the project is going to be competitively bid or if the roof is particularly complex. Standard specifications, like those published in 1926 by the National Slate Association may be used as a basis for developing specifications appropriate for a particular project. The specifications and drawings should contain all the information necessary to replicate the original appearance of the roof as closely as possible. Certain changes may have to be accepted, however, since several types of slate once prominent in this country, such as ribbon slate, are no longer quarried. It is wise to anticipate the replacement of older roofs so that proper planning can be undertaken and financial resources set aside, thereby, reducing the likelihood of rash last minute decisions.
Prior to a replacing a roof, historical documentation is gathered (such as photo documentation) to determine the roof configuration.
Photo: NPS files.
Roofing slate is sold by the square in the United States. One square is enough to cover 100 square feet (13.3 square meters) of plain roof surface when laid with a standard headlap of 3" (7.5cm). When ordering slate, considerable lead time should be allowed as delivery may take anywhere from 4 to 12 weeks and even as long as 1 year for special orders. Orders for random widths of a particular slate can generally be filled more quickly than orders for fixed widths. Once on site, slates should be stored on edge, under cover on pallets.
A roof and its associated flashings, gutters, and downspouts function as a system to shed water. Material choices should be made with this in mind. For example, use a single type of metal for all flashings and the rainwater conductor system to avoid galvanic action. Choose materials with life spans comparable to that of the slate, such as nonferrous nails. Use heavier gauge flashings or sacrificial flashings in areas that are difficult to access or subject to concentrated water flows.
Flashings are the weakest point in any roof. Given the permanence of slate, it is poor economy to use anything but the most durable of metals and the best workmanship for installing flashings. Copper is one of the best flashing materials, and along with terne, is most often associated with historic slate roofs. Copper is extremely durable, easily worked and soldered, and requires little maintenance. Sixteen ounce copper sheet is the minimum weight recommended for flashings. Lighter weights will not endure the erosive action of dust and grit carried over the roof by rain water. Heavier weight, 20 oz. (565 grams) or 24 oz. (680 grams), copper should be used in gutters, valleys, and areas with limited accessibility. Lead coated copper has properties similar to copper and is even more durable due to its additional lead coating. Lead coated copper is often used in restoration work.
Terne is a less desirable flashing material since it must be painted periodically. Terne coated stainless steel (TCS) is a modernday substitute for terne. Although more difficult to work than terne, TCS will not corrode if left unpainted; a great advantage, especially in areas that are difficult to access.
Once a metal is chosen, it is important to use it throughout for all flashings, gutters, downspouts, and metal roofs. Mixing of dissimilar metals can lead to rapid corrosion of the more electronegative metal by galvanic action. Where flashings turn up a vertical surface, they should be covered with a cap flashing. Slates which overlap metal flashings should be nailed in such a manner as to avoid puncturing the metal. This may be accomplished by punching a second hole about 2" (5cm) above the existing hole on the side of the slate not overlapping the metal flashing. It is important that holes be punched from the back side of the slate. In this way, a shallow countersink is created on the face of the slate in which the head of the nail may sit.
The use of artificial, mineral fiber slate is not recommended for restoration work since its rigid appearance is that of a manmade material and not one of nature. Artificial slates may also have a tendency to fade over time. And, although artificial slate costs less than natural slate, the total initial cost of an artificial slate roof is only marginally less than a natural slate roof. This is because all the other costs associated with replacing a slate roof, such as the cost of labor, flashings, and tearingoff the old roof, are equal in both cases. Over the long term, natural slate tends to be a better investment because several artificial slate roofs will have to be installed during the life span of one natural slate roof.
Roofing felt is being installed over the decking; a rubberized membrane is used selctively at the eaves and under some flashing. Photo: NPS files.
Clear roof expanses can be covered by an experienced slater and one helper at the rate of about two to three squares per day. More complex roofs and the presence of chimneys, dormers, and valleys can bring this rate down to below one square per day. One square per day is a good average rate to use in figuring how long a job will take to complete. This takes into account the installation of flashings and gutters and the setup and breakdown of scaffolding. Tear-off of the existing roof will require additional time.
Source : www.nps.gov